高级检索
当前位置: 首页 > 详情页

Application of serum Raman spectroscopy combined with classification model for rapid breast cancer screening

拉曼光谱联合机器学习在乳腺癌快速筛查中的应用

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]School of Medicine, University of Electronic Science and Technology of China, Chengdu, China [2]School of Electronic Science and Engineering, Nanjing University, Nanjing, China [3]Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
出处:
ISSN:

关键词: breast cancer Raman spectroscopy machine learning classification screening

摘要:
Introduction: This study aimed to evaluate the feasibility of using general Raman spectroscopy as a method to screen for breast cancer. The objective was to develop a machine learning model that utilizes Raman spectroscopy to detect serum samples from breast cancer patients, benign cases, and healthy subjects, with puncture biopsy as the gold standard for comparison. The goal was to explore the value of Raman spectroscopy in the differential diagnosis of breast cancer, benign lesions, and healthy individuals. Methods: In this study, blood serum samples were collected from a total of 333 participants. Among them, there were 129 cases of tumors (pathologically diagnosed as breast cancer and labeled as cancer), 91 cases of benign lesions (pathologically diagnosed as benign and labeled as benign), and 113 cases of healthy controls (labeled as normal). Raman spectra of the serum samples from each group were collected. To classify the normal, benign, and cancer sample groups, principal component analysis (PCA) combined with support vector machine (SVM) was used. The SVM model was evaluated using a cross-validation method. Results: The results of the study revealed significant differences in the mean Raman spectra of the serum samples between the normal and tumor/benign groups. Although the mean Raman spectra showed slight variations between the cancer and benign groups, the SVM model achieved a remarkable prediction accuracy of up to 98% for classifying cancer, benign, and normal groups. Discussion: In conclusion, this exploratory study has demonstrated the tremendous potential of general Raman spectroscopy as a clinical adjunctive diagnostic and rapid screening tool for breast cancer.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 3 区 医学
小类 | 3 区 肿瘤学
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 肿瘤学
JCR分区:
出版当年[2023]版:
Q2 ONCOLOGY
最新[2023]版:
Q2 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:1 总访问量:4560 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号