高级检索
当前位置: 首页 > 详情页

Thyroid nodule segmentation and classification in ultrasound images through intra- and inter-task consistent learning.

文献详情

资源类型:
Pubmed体系:
机构: [1]West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China [2]Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041, China [3]West China Hospital-SenseTime Joint Lab, Chengdu, Sichuan 610041, China [4]Sichuan University - Pittsburgh Institute, Sichuan University, Chengdu, Sichuan 610207, China [5]Shanghai Artificial Intelligence Laboratory, Shanghai 20 0 030, China [6]SenseTime Research, Shanghai 200233, China
出处:
ISSN:

关键词: Thyroid nodule Ultrasound image Segmentation and classification Multi-task learning Multi-stage learning Task consistency

摘要:
Thyroid nodule segmentation and classification in ultrasound images are two essential but challenging tasks for computer-aided diagnosis of thyroid nodules. Since these two tasks are inherently related to each other and sharing some common features, solving them jointly with multi-task leaning is a promising direction. However, both previous studies and our experimental results confirm the problem of inconsistent predictions among these related tasks. In this paper, we summarize two types of task inconsistency according to the relationship among different tasks: intra-task inconsistency between homogeneous tasks (e.g., both tasks are pixel-wise segmentation tasks); and inter-task inconsistency between heterogeneous tasks (e.g., pixel-wise segmentation task and categorical classification task). To address the task inconsistency problems, we propose intra- and inter-task consistent learning on top of the designed multi-stage and multi-task learning network to enforce the network learn consistent predictions for all the tasks during network training. Our experimental results based on a large clinical thyroid ultrasound image dataset indicate that the proposed intra- and inter-task consistent learning can effectively eliminate both types of task inconsistency and thus improve the performance of all tasks for thyroid nodule segmentation and classification.Copyright © 2022 Elsevier B.V. All rights reserved.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 工程技术
小类 | 1 区 工程:生物医学 1 区 核医学 1 区 计算机:人工智能 1 区 计算机:跨学科应用
最新[2023]版:
大类 | 1 区 医学
小类 | 1 区 计算机:人工智能 1 区 计算机:跨学科应用 1 区 工程:生物医学 1 区 核医学
第一作者:
第一作者机构: [1]West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China [2]Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041, China [3]West China Hospital-SenseTime Joint Lab, Chengdu, Sichuan 610041, China
通讯作者:
通讯机构: [1]West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China [2]Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041, China [3]West China Hospital-SenseTime Joint Lab, Chengdu, Sichuan 610041, China [4]Sichuan University - Pittsburgh Institute, Sichuan University, Chengdu, Sichuan 610207, China [5]Shanghai Artificial Intelligence Laboratory, Shanghai 20 0 030, China [*1]West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China [*2]Shanghai Artificial Intelligence Laboratory, Shanghai 20 0 030, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:0 总访问量:4561 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号