高级检索
当前位置: 首页 > 详情页

Stimuli-sensitive Linear-dendritic Block Copolymer-drug Prodrug As Nano-platform for Tumor Combination Therapy.

文献详情

资源类型:
Pubmed体系:

收录情况: ◇ EI ◇ 自然指数

机构: [1]Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China. [2]Animal Experimental Center of West China Hospital, Sichuan University, Chengdu, 610041, China. [3]Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom. [4]Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China. [5]Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA.
出处:
ISSN:

摘要:
Linear-dendritic block copolymer (LDBCs) are highly attractive candidates for smart drug delivery vehicles. Herein, we report an amphiphilic poly[(ethylene glycol) methyl ether methacrylate] (POEGMA) linear-peptide dendritic prodrug of doxorubicin (DOX) prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization. A hydrophobic dye-based photosensitizer chlorin e6 (Ce6) was employed for encapsulation in the prodrug nanoparticles (NPs) to obtain a LDBCs-based drug delivery system (LD-DOX/Ce6) which offered a combination cancer therapy. Due to the presence of Gly-Phe-Leu-Gly peptides and hydrazone bonds in the prodrug structure, LD-DOX/Ce6 were degraded into small fragments, thus specifically triggering the intracellular release of DOX and Ce6 in the tumor microenvironment. Bioinformatics analysis suggested that LD-DOX/Ce6 with laser irradiation treatment significantly induced apoptosis, DNA damage and cell cycle arrest. The combination treatment could not only suppress tumor growth, but also significantly reduced tumor metastasis compared with treatments with DOX or Ce6 through regulating EMT pathway, TGFβ pathway, angiogenesis and the hypoxia pathway. LD-DOX/Ce6 displayed a synergistic chemo-photodynamic anti-tumor efficacy, resulting in a high inhibition in tumor growth and metastasis, while maintaining an excellent biosafety. Therefore, this study has demonstrated potential of the biodegradable and tumor microenvironment-responsive LDBCs as an intelligent multifunctional drug delivery vehicle for high-efficiency cancer combination therapy. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 1 区 材料科学
小类 | 1 区 化学综合 1 区 物理化学 1 区 纳米科技 1 区 材料科学:综合 1 区 物理:应用 1 区 物理:凝聚态物理
最新[2023]版:
大类 | 1 区 材料科学
小类 | 1 区 化学:综合 1 区 物理化学 1 区 材料科学:综合 1 区 纳米科技 1 区 物理:应用 1 区 物理:凝聚态物理
第一作者:
第一作者机构: [1]Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
通讯作者:
通讯机构: [1]Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China. [4]Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52801 今日访问量:0 总访问量:4559 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号