高级检索
当前位置: 首页 > 详情页

Co-Delivery of Paclitaxel and shMCL-1 by Folic Acid-Modified Nonviral Vector to Overcome Cancer Chemotherapy Resistance.

文献详情

资源类型:
Pubmed体系:

收录情况: ◇ EI

机构: [1]Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China. [2]Department of Pharmacy, West China Second University Hospital of Sichuan University, Chengdu, 610041, P. R. China. [3]West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China. [4]Department of Radiation Oncology, Cancer Center, Affiliated Hospital of Xuzhou Medical University, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, P. R. China.
出处:

摘要:
Acquired chemoresistance presents a major clinical impediment, which is an urgent problem to be solved. Interestingly, myeloma cell leukemia-1 (MCL-1) and folate receptor expression levels are higher in chemotherapy-resistant patients than in pretreatment patients. In this study, a multifunctional folic acid (FA)-targeting core-shell structure is presented for simultaneous delivery of shMCL-1 and paclitaxel (PTX). The transfection efficiency of shMCL-1 with the FA-targeting delivery system is higher than with a nontargeting delivery system in Skov3 and A2780T cells. The FA-targeting system significantly inhibits cell growth, blocks cell cycles, and promotes apoptosis of cancer cells in vitro. The mechanisms involved in inhibiting growth are related to Bcl-2/Bax and cdc2/Cyclin B1 pathways. An analysis of RNA sequencing suggests that shMCL-1 reverses chemoresistance through regulating genes such as regulator of chromosome condensation 2 (RCC2). The synergetic effect of shMCL-1 and PTX effectively inhibits tumor growth in both PTX-resistant and normal cancer models by inducing tumor apoptosis, inhibiting proliferation, and limiting tumor angiogenesis. The study results indicate that a FA-targeting delivery system combining shMCL-1 with PTX can simultaneously target tumor sites and restore the sensitivity of chemotherapy-resistant cancer to PTX. These findings have important implications for patients with normal or PTX-resistant cancer.© 2021 Wiley-VCH GmbH.

语种:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 材料科学
小类 | 3 区 物理化学 3 区 纳米科技 3 区 材料科学:综合
最新[2023]版:
大类 | 2 区 材料科学
小类 | 2 区 物理化学 2 区 材料科学:综合 3 区 纳米科技
第一作者:
第一作者机构: [1]Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:53080 今日访问量:0 总访问量:4588 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号