高级检索
当前位置: 首页 > 详情页

Inactivated SARS-CoV-2 induces acute respiratory distress syndrome in human ACE2-transgenic mice.

文献详情

资源类型:
Pubmed体系:

收录情况: ◇ 统计源期刊 ◇ CSCD-C ◇ 卓越:领军期刊

机构: [1]Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, PR China [2]National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
出处:
ISSN:

摘要:
The development of animal models for COVID-19 is essential for basic research and drug/vaccine screening. Previously reported COVID-19 animal models need to be established under a high biosafety level condition for the utilization of live SARS-CoV-2, which greatly limits its application in routine research. Here, we generate a mouse model of COVID-19 under a general laboratory condition that captures multiple characteristics of SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) observed in humans. Briefly, human ACE2-transgenic (hACE2) mice were intratracheally instilled with the formaldehyde-inactivated SARS-CoV-2, resulting in a rapid weight loss and detrimental changes in lung structure and function. The pulmonary pathologic changes were characterized by diffuse alveolar damage with pulmonary consolidation, hemorrhage, necrotic debris, and hyaline membrane formation. The production of fatal cytokines (IL-1β, TNF-α, and IL-6) and the infiltration of activated neutrophils, inflammatory monocyte-macrophages, and T cells in the lung were also determined, suggesting the activation of an adaptive immune response. Therapeutic strategies, such as dexamethasone or passive antibody therapy, could effectively ameliorate the disease progression in this model. Therefore, the established mouse model for SARS-CoV-2-induced ARDS in the current study may provide a robust tool for researchers in the standard open laboratory to investigate the pathological mechanisms or develop new therapeutic strategies for COVID-19 and ARDS.© 2022. The Author(s).

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 1 区 医学
小类 | 1 区 生化与分子生物学 1 区 细胞生物学
最新[2023]版:
大类 | 1 区 医学
小类 | 1 区 生化与分子生物学 1 区 细胞生物学
第一作者:
第一作者机构: [1]Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, PR China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:43377 今日访问量:0 总访问量:3120 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号