高级检索
当前位置: 首页 > 详情页

Bioadhesive injectable hydrogel with phenolic carbon quantum dot supported Pd single atom nanozymes as a localized immunomodulation niche for cancer catalytic immunotherapy.

文献详情

资源类型:
Pubmed体系:

收录情况: ◇ EI

机构: [1]Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, College of Medicine, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China [2]Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China [3]National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China [4]Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China [5]CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China [6]Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China [7]Department of Oncology, General Hospital of Western Theater Command of PLA, Chengdu, 610083, China
出处:
ISSN:

摘要:
Immunotherapy is a powerful way to treat cancer, however, systemic treatment-associated adverse effects remain a major concern. In this study, a bioadhesive injectable hydrogel is developed to provide localized immune niches for tumor microenvironment immunomodulation and cancer catalytic immunotherapy. First, a phenolic single atom nanozyme (SAN) was developed by in situ synthesis of Pd single atom on catechol-grafted carbon-quantum-dot (DA-CQD@Pd) templates. Then, the bioadhesive injectable hydrogel consisting of DA-CQD@Pd SAN and immune adjuvant CpGODN was formed through SAN-catalyzed free-radical polymerization. The SAN exhibited peroxidase-like activity to generate ROS and kill tumor cells through catalytic therapy. The hydrogel locally released CpGODN in a sustained manner, which limited the risk of systemic exposure, reducing the impact of CpGODN toxicity, and protecting CpGODN from degradation. The bioadhesive hydrogel immobilized around solid tumor to provide an immune response site after injection. When combined it with the administration of immune checkpoint inhibitor anti-PD-L1, the hydrogel realized localized immunomodulation, maximized therapeutic efficacy and prevents tumor metastasis via a catalytic immunotherapy.Copyright © 2021 Elsevier Ltd. All rights reserved.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 工程技术
小类 | 1 区 工程:生物医学 1 区 材料科学:生物材料
最新[2023]版:
大类 | 1 区 医学
小类 | 1 区 工程:生物医学 1 区 材料科学:生物材料
第一作者:
第一作者机构: [1]Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, College of Medicine, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:43389 今日访问量:0 总访问量:3120 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号