高级检索
当前位置: 首页 > 详情页

Tumor-derived microparticles promote the progression of triple-negative breast cancer via PD-L1-associated immune suppression.

文献详情

资源类型:
Pubmed体系:
机构: [1]Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuannanli, Chaoyang District, 100021, Beijing, China [2]Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics and Center of Biomedical Big Data, West China Hospital of Sichuan University, Chengdu, 610041, China [3]State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, 610041, China
出处:
ISSN:

摘要:
Membrane vesicles, including exosomes and microparticles (MPs), serve to package and transfer the cellular cargo during inter/extracellular communication, which is of great interest in cancer development, especially in the dissemination of signal transduction-associated traits from donor cells to recipient cells. Although increasing evidence suggests that microparticles (MPs) contribute to the development of cancer, their unique characteristics remain to be exploited. Here, we examined the secretion of MPs in tumor tissues from triple-negative breast cancer (TNBC) patients and found that the tumor cells could release MPs loaded with immune checkpoint molecular programmed cell death ligand 1 (PD-L1), especially in patients treated with traditional clinical interventions, such as chemotherapy and radiotherapy. These PD-L1-loading MPs contribute to the suppressive immune microenvironment, eventually resulting in the tumor progression in TNBC. Mechanically, we proved that PD-L1-loading MPs could suppress the activation and function of functional cluster of differentiation CD8+ T cells. Meanwhile, the PD-L1-loading MPs could mediate the differentiation of macrophages toward the immune-suppressive M2 phenotype via the activation of the TANK-binding kinase 1 (TBK1)/signal transducer and activator of transcription 6 (STAT6) signal and suppression of the serine-threonine kinase (AKT)/mammalian target of rapamycin (mTOR) signal. Given the increasing MP production induced by traditional clinical interventions, we further combined chemotherapy with the PD-L1 inhibitor atezolizumab (ATZ) to efficiently abrogate the immunosuppression caused by the PD-L1-loading MPs. Therefore, our study unveils the mechanism by which tumor cells systemically evade immune surveillance by releasing the PD-L1-loading MPs, and provides new insights into clinical TNBC immunotherapy.Copyright © 2021 Elsevier B.V. All rights reserved.

语种:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 1 区 医学
小类 | 2 区 肿瘤学
最新[2023]版:
大类 | 1 区 医学
小类 | 2 区 肿瘤学
第一作者:
第一作者机构: [1]Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuannanli, Chaoyang District, 100021, Beijing, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:43370 今日访问量:0 总访问量:3120 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号