高级检索
当前位置: 首页 > 详情页

Defects of cohesin loader lead to bone dysplasia associated with transcriptional disturbance.

文献详情

资源类型:
Pubmed体系:

收录情况: ◇ 预警期刊

机构: [1]Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China. [2]Hospital of Stomatology, Orthodontic Department, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China. [3]State Key Laboratory of Oral Diseases, Department of Pediatric Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
出处:
ISSN:

摘要:
Cohesin loader nipped-B-like protein (Nipbl) is increasingly recognized for its important role in development and cancer. Cornelia de Lange Syndrome (CdLS), mostly caused by heterozygous mutations of Nipbl, is an autosomal dominant disease characterized by multiorgan malformations. However, the regulatory role and underlying mechanism of Nipbl in skeletal development remain largely elusive. In this study, we constructed a Nipbl-a Cas9-knockout (KO) zebrafish, which appeared with severe retardation of global growth and skeletal development. Deficiency of Nipbl remarkably compromised cell growth and survival, and osteogenic differentiation of mammalian osteoblast precursors. Furthermore, Nipbl depletion impaired the cell cycle process, and caused DNA damage accumulation and cellular senescence. In addition, nucleolar fibrillarin expression, global rRNA biogenesis, and protein translation were defective in the Nipbl-depleted osteoblast precursors. Interestingly, an integrated stress response inhibitor (ISRIB), partially rescued Nipbl depletion-induced cellular defects in proliferation and apoptosis, osteogenesis, and nucleolar function. Simultaneously, we performed transcriptome analysis of Nipbl deficiency on human neural crest cells and mouse embryonic fibroblasts in combination with Nipbl ChIP-Seq. We found that Nipbl deficiency caused thousands of differentially expressed genes including some important genes in bone and cartilage development. In conclusion, Nipbl deficiency compromised skeleton development through impairing osteoblast precursor cell proliferation and survival, and osteogenic differentiation, and also disturbing the expression of some osteogenesis-regulatory genes. Our study elucidated that Nipbl played a pivotal role in skeleton development, and supported the fact that treatment of ISRIB may provide an early intervention strategy to alleviate the bone dysplasia of CdLS.© 2021 Wiley Periodicals LLC.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 生物学
小类 | 2 区 生理学 3 区 细胞生物学
最新[2023]版:
大类 | 2 区 生物学
小类 | 2 区 生理学 3 区 细胞生物学
第一作者:
第一作者机构: [1]Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China.
共同第一作者:
通讯作者:
通讯机构: [1]Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China. [*1]Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat‐sen University, Guangzhou, Guangdong, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:43390 今日访问量:1 总访问量:3121 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号