高级检索
当前位置: 首页 > 详情页

A thiazole-derived oridonin analogue exhibits antitumor activity by directly and allosterically inhibiting STAT3.

文献详情

资源类型:
Pubmed体系:

收录情况: ◇ EI ◇ 自然指数

机构: [1]Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China, the [2]School of Life Science, Peking University, Beijing 100084, China, the [3]National Institute of Biological Sciences (NIBS), Beijing 102206, China, the [4]Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, the [5]Computer Network Information Center and Center of Scientific Computing Applications and Research, Chinese Academy of Sciences, Beijing 100190, China, and the [6]Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming 650223, China
出处:
ISSN:

摘要:
Constitutive activation of signal transducer and activator of transcription 3 (STAT3) occurs in ∼70% of human cancers, and STAT3 is regarded as one of the most promising targets for cancer therapy. However, specific direct STAT3 inhibitors remain to be developed. Oridonin is an ent-kaurane plant-derived diterpenoid with anti-cancer and anti-inflammatory activities. Here, using an array of cell-based and biochemical approaches, including cell proliferation and apoptosis assays, pulldown and reporter gene assays, site-directed mutagenesis, and molecular dynamics analyses, we report that a thiazole-derived oridonin analogue, CYD0618, potently and directly inhibits STAT3. We found that CYD0618 covalently binds to Cys-542 in STAT3 and suppresses its activity through an allosteric effect, effectively reducing STAT3 dimerization and nuclear translocation, as well as decreasing expression of STAT3-targeted oncogenes. Remarkably, CYD0618 not only strongly inhibited growth of multiple cancer cell lines that harbor constitutive STAT3 activation, but it also suppressed in vivo tumor growth via STAT3 inhibition. Taken together, our findings suggest Cys-542 as a druggable site for selectively inhibiting STAT3 and indicate that CYD0618 represents a promising lead compound for developing therapeutic agents against STAT3-driven diseases. © 2019 Shen et al.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 2 区 生物学
小类 | 2 区 生化与分子生物学
最新[2023]版:
大类 | 2 区 生物学
小类 | 2 区 生化与分子生物学
第一作者:
第一作者机构: [1]Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China, the
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:53080 今日访问量:0 总访问量:4588 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号