高级检索
当前位置: 首页 > 详情页

Dysbiosis of gut microbiota in patients with neuromyelitis optica spectrum disorders: A cross sectional study

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [a]Department of Neurology, West China Hospital, Sichuan University, Chengdu, China [b]Department of Biology, University of California, San Diego, La Jolla, California, United States [c]Translational Center for Oncoimmunology, Sichuan Cancer Hospital and Research Institute, Sichuan Cancer Center, Chengdu, China
出处:
ISSN:

摘要:
Background: Accumulating evidence points to an association of alternations in the gut microbiota with health and disease, including the development of neurological diseases. However, there are relatively scarce studies of the role of the gut microbiota in neuromyelitis optica spectrum disorders (NMOSD). Therefore, the aim of the present study was to evaluate the differences in the intestinal microbiota composition between patients with NMOSD and healthy control subjects. Methods: This was a cross-sectional study. Stool samples were obtained from 20 patients with NMOSD and 20 healthy family members of the patients as controls (HC). The bacterial 16S rRNA gene amplification sequencing (V3-V4 region) was used to detect the composition and structure of the intestinal microbiota community in the two groups. Results: The gut microbiota compositions clearly differed between the NMOSD and HC groups, although there was no significant difference in the overall microbial community structure. In detail, patients with NMOSD had an increased abundance of the pathogenic genera Flavonifractor (P = .004) and Streptococcus (P = .007) compared with the HC. In addition, several intestinal commensal bacteria were detected at significantly lower abundance in the NMOSD patients compared to the controls, including Faecalibacteriurn, Lachnospiracea_incertae_sedis, Prevotella, Blautia, Roseburia, Romboutsia, Coprococcus, and Fusicatenibacter (all P < .05). ROC curve analysis suggested that gut microbiota genera had potential to distinguish NMOSD from controls. Functional analysis further indicated that the gut microbiome of NMOSD patients was associated with three significantly downregulated metabolic pathways: "Photosynthesis" (P < .001), "Photosynthesis proteins" (P < .001), and "Thiamine metabolism" (P = .007). These differences remained significant even after correction for multiple comparisons (all PFDR < 0.05). Conclusion: Our results reveal the dysbiosis of intestinal bacteria and regarding metabolic abnormalities in patients with NMOSD. Further studies are warranted to elucidate the potential mechanism by which dysbiosis of microbiota contributes to the onset and progression of NMOSD.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 3 区 医学
小类 | 3 区 免疫学 4 区 神经科学
最新[2023]版:
大类 | 4 区 医学
小类 | 4 区 免疫学 4 区 神经科学
JCR分区:
出版当年[2020]版:
Q3 IMMUNOLOGY Q3 NEUROSCIENCES
最新[2023]版:
Q2 NEUROSCIENCES Q3 IMMUNOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [a]Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
共同第一作者:
通讯作者:
通讯机构: [a]Department of Neurology, West China Hospital, Sichuan University, Chengdu, China [*1]Department of Neurology, West China Hospital, Sichuan University, #37 Guo Xuexiang, Chengdu 610041, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:43377 今日访问量:0 总访问量:3120 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号