高级检索
当前位置: 首页 > 详情页

Research progress in computer-aided diagnosis systems for lung cancer

文献详情

资源类型:
Pubmed体系:
机构: [1]Department of Thoracic Surgery, Sichuan Clinical Research Center for cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University ofElectronic Science and Technology of China, Chengdu, China [2]Department of Medical Oncology, Sichuan Clinical Research Center for cancer, Sichuan CancerHospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China [3]Department of Radiation Oncology,Sichuan Clinical Research Center for cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology ofChina, Chengdu, China
出处:

摘要:
Lung cancer remains the top cause of cancer death, demanding consistent decisions. This clinically oriented review synthesizes computer-aided diagnosis across classical imaging, machine learning, and deep learning, emphasizing bedside-proven advances: multimodal CT/PET-clinical fusion; small-data strategies; interpretable AI; and privacy-preserving multi-center learning. Reported systems reach AUC ≥ 0.95 with <0.1 false positives/CT and boost early detection by ~20-30%; prognostic C-index ~0.85-0.90. We outline implementation checkpoints and priorities to convert accuracy into patient benefit.© 2025. The Author(s).

语种:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 1 区 医学
小类 | 1 区 卫生保健与服务 1 区 医学:信息
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 卫生保健与服务 1 区 医学:信息
第一作者:
第一作者机构: [1]Department of Thoracic Surgery, Sichuan Clinical Research Center for cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University ofElectronic Science and Technology of China, Chengdu, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:65780 今日访问量:3 总访问量:5151 更新日期:2025-12-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号