高级检索
当前位置: 首页 > 详情页

AI-powered prediction model for neoadjuvant chemotherapy efficacy: comprehensive analysis of breast cancer histological images

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Sichuan Univ, West China Hosp, Dept Pathol, Chengdu, Peoples R China [2]Sichuan Univ, West China Hosp, Inst Clin Pathol, Chengdu, Peoples R China [3]Sun Yat Sen Univ, Affiliated Hosp 1, Dept Pathol, Guangzhou, Peoples R China [4]Shanxi Med Univ, Chinese Acad Med Sci, Shanxi Prov Canc Hosp, Shanxi Hosp,Canc Hosp,Dept Pathol, Taiyuan, Peoples R China [5]Sichuan Prov Peoples Hosp, Dept Pathol, Chengdu, Peoples R China [6]Southwest Med Univ, Affiliated Hosp, Dept Pathol, Luzhou, Peoples R China
出处:
ISSN:

摘要:
Breast cancer patients exhibit variable responses to neoadjuvant therapy (NAT), necessitating robust predictive biomarkers. We developed an artificial intelligence (AI)-driven integrated predictive model (IPM) combining histopathological, clinical, and immune features to address this challenge. Using whole-slide images from 1035 patients across four centers, we compared tumor epithelium (TE-score), stroma (TS-score), and whole-tumor (TR-score) deep learning biomarkers, identifying TR-score as optimal (AUC = 0.729 vs. 0.686/0.719 for TE/TS-scores). The IPM, incorporating TR-score and clinical variables, demonstrated superior NAT response prediction versus clinicopathological models (validation AUC = 0.780 vs. 0.706, p < 0.001), with 10% higher accuracy. Immune profiling further enhanced performance (AUC = 0.831 vs. 0.822, p = 0.183). These results establish the biological and clinical validity of TR-score for characterizing tumor-stroma interactions, with IPM providing a generalizable framework for precision oncology. The model's stability across multicenter cohorts (AUCs 0.781-0.816) and incremental value of immune data suggest its utility in guiding NAT decision-making and trial stratification.

基金:

基金编号: 82404081 2024YFFK0339 24NSFSC7843

语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 1 区 医学
小类 | 2 区 肿瘤学
最新[2025]版:
大类 | 1 区 医学
小类 | 2 区 肿瘤学
JCR分区:
出版当年[2024]版:
Q1 ONCOLOGY
最新[2024]版:
Q1 ONCOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Sichuan Univ, West China Hosp, Dept Pathol, Chengdu, Peoples R China [2]Sichuan Univ, West China Hosp, Inst Clin Pathol, Chengdu, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:65780 今日访问量:0 总访问量:5151 更新日期:2025-12-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号