高级检索
当前位置: 首页 > 详情页

修订:Developing a machine learning-based predictive model for the analgesic effectiveness of transdermal fentanyl in cancer patients: an interpretable approach (Mar, 10.1007/s11096-024-01860-5, 2025)

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Chongqing Jiulongpo Peoples Hosp, Dept Pharm, Chongqing, Peoples R China [2]Univ Elect Sci & Technol China, Dept Pharm, Sichuan Clin Res Ctr Canc, Sichuan Canc Hosp & Inst,Sichuan Canc Ctr, Chengdu, Peoples R China [3]Chongqing Univ Canc Hosp, Dept Pharm, Chongqing, Peoples R China [4]Chongqing Univ, Chongqing, Peoples R China
出处:
ISSN:

摘要:
In the original version of this article, the term “BMI” in the Results subsection of the Abstract was incorrectly written as “BMI2 ”. The correct Results subsection of the abstract should have been “Among 151 patients, 27.2% reported inefectiveness of transdermal fentanyl. Logistic regression identifed key factors of NRS, transdermal fentanyl dosage, BMI, and ALT. Among the nine models, RF Model 8 exhibited the best performance, achieving a ROC-AUC of 0.984 (95% CI: [0.968, 0.999]). This performance was further validated by the confusion matrix metrics and visualization results. The SHAP analysis highlighted BMI, lower doses, NRS, and ALT as predictors of transdermal fentanyl inefectiveness”.

语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 3 区 医学
小类 | 3 区 药学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 药学
JCR分区:
出版当年[2024]版:
Q2 PHARMACOLOGY & PHARMACY
最新[2024]版:
Q2 PHARMACOLOGY & PHARMACY

影响因子: 最新[2024版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Chongqing Jiulongpo Peoples Hosp, Dept Pharm, Chongqing, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:65780 今日访问量:3 总访问量:5151 更新日期:2025-12-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号