高级检索
当前位置: 首页 > 详情页

Correction: Developing a machine learning-based predictive model for the analgesic effectiveness of transdermal fentanyl in cancer patients: an interpretable approach

文献详情

资源类型:
Pubmed体系:
机构: [1]Department of Pharmacy, Chongqing Jiulongpo People’s Hospital, Chongqing, China [2]Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Afliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China [3]Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China [4]Chongqing University, Chongqing, China
出处:
ISSN:

摘要:
In the original version of this article, the term “BMI” in the Results subsection of the Abstract was incorrectly written as “BMI2 ”. The correct Results subsection of the abstract should have been “Among 151 patients, 27.2% reported inefectiveness of transdermal fentanyl. Logistic regression identifed key factors of NRS, transdermal fentanyl dosage, BMI, and ALT. Among the nine models, RF Model 8 exhibited the best performance, achieving a ROC-AUC of 0.984 (95% CI: [0.968, 0.999]). This performance was further validated by the confusion matrix metrics and visualization results. The SHAP analysis highlighted BMI, lower doses, NRS, and ALT as predictors of transdermal fentanyl inefectiveness”.

语种:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 3 区 医学
小类 | 3 区 药学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 药学
第一作者:
第一作者机构: [1]Department of Pharmacy, Chongqing Jiulongpo People’s Hospital, Chongqing, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:58134 今日访问量:0 总访问量:4810 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号