高级检索
当前位置: 首页 > 详情页

Ultra-high dose rate radiotherapy overcomes radioresistance in head and neck squamous cell carcinoma

文献详情

资源类型:
Pubmed体系:

收录情况: ◇ 统计源期刊 ◇ 卓越:领军期刊

机构: [1]Department of Biotherapy, Cancer Center, and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China [2]Sichuan Clinical Research Center of Biotherapy, Chengdu, China [3]Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang, China and 4Department of Applied Statistics, Social Science, and Humanities, New York University, New York, NY, USA
出处:
ISSN:

摘要:
Radiotherapy (RT) resistance in head and neck squamous cell carcinoma (HNSCC) significantly hampers local control and patient prognosis. This study investigated the efficacy and molecular mechanisms of high-energy X-ray-based ultra-high dose rate radiotherapy (UHDR-RT) in overcoming RT resistance. The established RT-resistant HNSCC cell lines and animal models were subjected to UHDR-RT or conventional RT (Conv-RT) via a high-power rhodotron accelerator. Cellular assays assessed the malignant phenotype, viability, and degree of DNA damage, whereas in vivo evaluations focused on tumor proliferation and the tumor immune microenvironment (TiME). Transcriptome sequencing and Olink proteomics were employed to explore the underlying mechanisms involved. In vitro experiments indicated that UHDR-RT suppressed radioresistant cell proliferation and invasion, while promoting apoptosis and exacerbating DNA damage. In contrast, its efficacy in radiosensitive cells was comparable to that of Conv-RT. In vivo studies using patient-derived xenograft nude mice models demonstrated that UHDR-RT only partially reversed RT resistance. Transcriptomic and proteomic analyses of C57BL/6J mice models revealed the predominant role of TiME modulating in reversing radioresistance. Immunofluorescence and flow cytometry confirmed increased CD8+ T cells and an increased M1/M2 macrophage ratio post-UHDR-RT. Mechanistically, UHDR-RT activated CD8+ T cells, which stimulated M1 macrophages through paracrine IFN-γ signaling, thereby enhancing TiME activation. Furthermore, the activated M1 macrophages secreted CXCL9, which in turn reactivated CD8+ T cells, forming a feedforward loop that amplified TiME activation. This study elucidates the dual role of UHDR-RT in directly inducing DNA damage and modulating the TiME, highlighting its potential in treating radioresistant HNSCC.© 2025. The Author(s).

语种:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 1 区 医学
小类 | 1 区 生化与分子生物学 1 区 细胞生物学
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 生化与分子生物学 1 区 细胞生物学
第一作者:
第一作者机构: [1]Department of Biotherapy, Cancer Center, and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China [2]Sichuan Clinical Research Center of Biotherapy, Chengdu, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:56486 今日访问量:0 总访问量:4732 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号