高级检索
当前位置: 首页 > 详情页

A recombinant protein vaccine induces protective immunity against SARS-CoV-2 JN.1 and XBB-lineage subvariants

文献详情

资源类型:
Pubmed体系:

收录情况: ◇ 统计源期刊 ◇ 卓越:领军期刊

机构: [1]Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China [2]National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China [3]Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
出处:
ISSN:

摘要:
The emergence of XBB- and JN.1-lineages with remarkable immune evasion characteristics have led to rises in breakthrough infections within populations. In addition, the unfavorable impacts of immune imprinting, stemming from continuous exposure to antigens from circulated viruses, have been observed to incline immune response against earlier lineages, thereby declining the neutralization to newly emerged Omicron subvariants. In response to this, the advancement of next-generation vaccines against COVID-19 targeting components from new subvariants such as XBB-lineage is imperative. In the current study, a self-assembled trimeric recombinant protein (RBDXBB.1.5-HR) was generated by concatenating the sequences of the receptor binding domain (RBD) derived from XBB.1.5 with heptad-repeat 1 (HR1) and HR2 sequences from the spike S2 subunit. Adjuvanted-RBDXBB.1.5-HR induced robust humoral and cellular immune responses, characterized by elevated neutralization against JN.1-inculuded subvariants and a substantial population of antigen-specific T memory cells. Protective immunity conferred by RBDXBB.1.5-HR vaccine was preserved post-immunization, as evidenced by germinal center B (GC B) and T follicular helper (Tfh) responses, sustained neutralization potency, and an increase in memory B cells (MBCs) and long-lived plasma cells (LLPCs). The RBDXBB.1.5-HR vaccine showed a favorable boosting effect when administered heterologously after three doses of inactivated virus (IV) and mRNA vaccines. Significantly, it provided protection against live Omicron EG.5.1 viruses in vivo. The monovalent RBDXBB.1.5-HR vaccine showed favorable safety and immunogenicity, boosting neutralizing antibodies against JN.1- and XBB-lineage subvariants in individuals with prior COVID-19 vaccinations. These findings highlight its clinical potential in safeguarding against circulating Omicron subvariants.© 2025. The Author(s).

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
最新[2023]版:
大类 | 1 区 医学
小类 | 1 区 生化与分子生物学 1 区 细胞生物学
第一作者:
第一作者机构: [1]Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:54684 今日访问量:0 总访问量:4646 更新日期:2025-03-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号