高级检索
当前位置: 首页 > 详情页

Automated recognition and segmentation of lung cancer cytological images based on deep learning

文献详情

资源类型:
Pubmed体系:
机构: [1]Department of Pathology, Chengdu Second People's Hospital, Sichuan, China. [2]Department of Pathology, China-Japan Friendship Hospital, Beijing, China. [3]Technical University of Munich, Munich, Germany. [4]School of Optics and Photonics, Beijing Institute of Technology, Beijing, China. [5]Key Laboratory of Photoelectronic Imaging Technology and System, Ministry of Education, Beijing Institute of Technology, Beijing, China. [6]Thorough Lab, Thorough Future, Beijing, China. [7]Chengdu Uniwell Medical Laboratory, Sichuan, China.
出处:

摘要:
Compared with histological examination of lung cancer, cytology is less invasive and provides better preservation of complete morphology and detail. However, traditional cytological diagnosis requires an experienced pathologist to evaluate all sections individually under a microscope, which is a time-consuming process with low interobserver consistency. With the development of deep neural networks, the You Only Look Once (YOLO) object-detection model has been recognized for its impressive speed and accuracy. Thus, in this study, we developed a model for intraoperative cytological segmentation of pulmonary lesions based on the YOLOv8 algorithm, which labels each instance by segmenting the image at the pixel level. The model achieved a mean pixel accuracy and mean intersection over union of 0.80 and 0.70, respectively, on the test set. At the image level, the accuracy and area under the receiver operating characteristic curve values for malignant and benign (or normal) lesions were 91.0% and 0.90, respectively. In addition, the model was deemed suitable for diagnosing pleural fluid cytology and bronchoalveolar lavage fluid cytology images. The model predictions were strongly correlated with pathologist diagnoses and the gold standard, indicating the model's ability to make clinical-level decisions during initial diagnosis. Thus, the proposed method is useful for rapidly localizing lung cancer cells based on microscopic images and outputting image interpretation results.Copyright: © 2025 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
最新[2023]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
第一作者:
第一作者机构: [1]Department of Pathology, Chengdu Second People's Hospital, Sichuan, China. [2]Department of Pathology, China-Japan Friendship Hospital, Beijing, China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:53699 今日访问量:0 总访问量:4607 更新日期:2025-02-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号