高级检索
当前位置: 首页 > 详情页

Development and evaluation of a CRISPR/Cas12a-based diagnostic test for rapid detection and genotyping of HR-HPV in clinical specimens

文献详情

资源类型:
Pubmed体系:
机构: [1]State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China [2]Department of Clinical Laboratory, Xiangyang Central Hospital, AffiliatedHospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China [3]Department of Clinical Laboratory, Xiangyang No.1 People's Hospital, Hubei Universitly of Medicine, Xiangyang, China [4]Dynamiker Sub-Center of Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Disease, Tianjin, China [5]Academy of National Food and Strategic Reserves Administration, Beijing, China [6]Institute of Pediatrics, Faculty of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China [7]Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
出处:

关键词: CRISPR/Cas12a multiplex detection HR-HPV genotyping clinical samples

摘要:
Persistent infection with high-risk human papillomavirus (HR-HPV) is the principal etiological factor of cervical cancer. Considering the gradual progression of cervical cancer, the early, rapid, sensitive, and specific identification of HPV, particularly HR-HPV types, is crucial in halting the advancement of the illness. Here, we established a rapid, highly sensitive, and specific HR-HPV detection platform, leveraging the CRISPR/Cas12a assay in conjunction with multienzyme isothermal rapid amplification. Our platform enables the detection and genotyping of 14 types of HR-HPV by using type-specific crRNAs. The outcomes of the detection can be interpreted either through a fluorescence reader or visually. Furthermore, we achieved one-tube multiplex detection of 14 HR-HPV types through the use of multiple amplifications and a crRNA pool. The detection sensitivity of this method is 2 copies/μL with no cross-reactivity, and the results can be obtained within 30 minutes. This method exhibited 100% clinical sensitivity and 100% clinical specificity when applied to 258 clinical specimens. Based on these findings, our CRISPR/Cas-based HR-HPV detection platform holds promise as a novel clinical detection tool, offering a visually intuitive and expedited alternative to existing HPV infection diagnostics and providing fresh perspectives for clinical cervical cancer screening.IMPORTANCEThis study developed a novel high-risk human papillomavirus (HR-HPV) detection platform based on CRISPR/Cas12a technology. This platform not only enables the rapid, highly sensitive, and specific detection and genotyping of 14 types of HR-HPV but also achieves single-tube multiplex detection of 14 HR-HPV types through ingenious design. The outcomes of the detection can be interpreted either through a fluorescence reader or visually. To the best of our knowledge, this is the first paper to utilize CRISPR/Cas diagnostic technology for the simultaneous detection of 14 types of HPV and to evaluate its feasibility in clinical sample detection using a large number of clinical samples. We hope that this work will facilitate the rapid and accurate detection of HPV and promote the broader application of CRISPR/Cas diagnostic technology.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 2 区 生物学
小类 | 3 区 微生物学
最新[2025]版:
大类 | 2 区 生物学
小类 | 3 区 微生物学
第一作者:
第一作者机构: [1]State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:59140 今日访问量:0 总访问量:4853 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号