高级检索
当前位置: 首页 > 详情页

SegRap2023: A benchmark of organs-at-risk and gross tumor volume Seg mentation for Ra diotherapy Planning of Nasopharyngeal Carcinoma

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu, Peoples R China [2]Sichuan Canc Hosp & Inst, Dept Radiat Oncol, Chengdu, Peoples R China [3]Shanghai Artificial Intelligence Lab, Shanghai, Peoples R China [4]Canon Med Syst China Co Ltd, Beijing, Peoples R China [5]Stockholm Univ, Dept Med Radiat Phys, Solna, Sweden [6]KTH, Dept Biomed Engn & Hlth Syst, Huddinge, Sweden [7]Northwestern Polytech Univ, Sch Comp Sci & Engn, Natl Engn Lab Integrated Aerosp Ground Ocean Big D, Xian, Peoples R China [8]Hong Kong Univ Sci & Technol Guangzhou, Dept Syst Hub, Guangzhou, Peoples R China [9]Huazhong Univ Sci & Technol, Sch Engn Sci, Wuhan Natl Lab Optoelect, Wuhan, Peoples R China [10]Huazhong Univ Sci & Technol, Sch Engn Sci, MoE Key Lab Biomed Photon, Wuhan, Peoples R China [11]Yonsei Univ, Coll Med, Med Phys & Biomed Engn Lab MPBEL, Seoul, South Korea [12]Yonsei Univ, Coll Med, Heavy Ion Therapy Res Inst, Dept Radiat Oncol,Yonsei Canc Ctr, Seoul, South Korea [13]Oncosoft Inc, Seoul, South Korea [14]German Canc Res Ctr DKFZ Heidelberg, Div Med Image Comp, Heidelberg, Germany [15]Brunel Univ London, Dept Comp Sci, Uxbridge, England [16]MedMind Technol Co Ltd, Beijing, Peoples R China [17]Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Dept Automat, Shanghai, Peoples R China [18]Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing, Peoples R China
出处:
ISSN:

关键词: Nasopharyngeal carcinoma Organ-at-risk Gross tumor volume Segmentation

摘要:
Radiation therapy is a primary and effective treatment strategy for NasoPharyngeal Carcinoma (NPC). The precise delineation of Gross Tumor Volumes (GTVs) and Organs-At-Risk (OARs) is crucial in radiation treatment, directly impacting patient prognosis. Despite that deep learning has achieved remarkable performance on various medical image segmentation tasks, its performance on OARs and GTVs of NPC is still limited, and high-quality benchmark datasets on this task are highly desirable for model development and evaluation. To alleviate this problem, the SegRap2023 challenge was organized in conjunction with MICCAI2023 and presented a large-scale benchmark for OAR and GTV segmentation with 400 Computed Tomography (CT) scans from 200 NPC patients, each with a pair of pre-aligned non-contrast and contrast-enhanced CT scans. The challenge aimed to segment 45 OARs and 2 GTVs from the paired CT scans per patient, and received 10 and 11 complete submissions for the two tasks, respectively. In this paper, we detail the challenge and analyze the solutions of all participants. The average Dice similarity coefficient scores for all submissions ranged from 76.68% to 86.70%, and 70.42% to 73.44% for OARs and GTVs, respectively. We conclude that the segmentation of relatively large OARs is well-addressed, and more efforts are needed for GTVs and small or thin OARs. The benchmark remains available at: https://segrap2023.grand-challenge.org.

基金:

基金编号: 62271115 82203197 2022YFSY0055 2023NS-FSC1852 2023-803 2022ROKF04

语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
最新[2023]版:
大类 | 1 区 医学
小类 | 1 区 计算机:人工智能 1 区 计算机:跨学科应用 1 区 工程:生物医学 1 区 核医学
JCR分区:
出版当年[2025]版:
最新[2023]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu, Peoples R China [2]Sichuan Canc Hosp & Inst, Dept Radiat Oncol, Chengdu, Peoples R China [3]Shanghai Artificial Intelligence Lab, Shanghai, Peoples R China
通讯作者:
通讯机构: [1]Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu, Peoples R China [3]Shanghai Artificial Intelligence Lab, Shanghai, Peoples R China [*1]2006 Xiyuan Ave, Chengdu 611731, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:53699 今日访问量:0 总访问量:4607 更新日期:2025-02-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号