高级检索
当前位置: 首页 > 详情页

Intravenous immunoglobulin ameliorates doxorubicin-induced intestinal mucositis by inhibiting the Syk/PI3K/Akt axis and ferroptosis

文献详情

资源类型:
Pubmed体系:
机构: [1]Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052 Chengdu, China [2]Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041 Chengdu, China
出处:
ISSN:

关键词: Intravenous immunoglobulin Chemotherapy-induced mucositis Ferroptosis Epithelium barrier Proteomics Syk/PI3K/Akt axis

摘要:
Chemotherapy-induced mucositis (CIM) significantly impacts quality of life and reduces survival in patients treated with specific chemotherapeutic agents. However, effective clinical treatments for CIM remain limited. Intravenous immunoglobulin (IVIg), a therapeutic derived from pooled human plasma, is widely used to treat inflammatory diseases. This study aimed to evaluate the therapeutic efficacy and underlying mechanisms of IVIg in CIM.A murine model of doxorubicin (Dox)-induced intestinal mucositis and an organoid model of small intestinal injury were used to explore the protective effects of IVIg on CIM. Immunostaining, transmission electron microscopy (TEM), western blotting (WB), and proteomic analysis were used to further investigate ferroptosis in intestinal epithelial cells and the underlying mechanisms.In the murine model of Dox-induced intestinal mucositis, intestinal epithelial barrier was destroyed and ferroptosis increased, characterized by weight loss, hematological injury, inflammation, mitochondrial atrophy in intestinal epithelial cells, lipid peroxidation, impairment of tight junctions, and damage to intestinal microvilli. IVIg treatment significantly ameliorated intestinal epithelial barrier damage and reduced ferroptosis both in vitro and in vivo. Proteomic analysis revealed that the FcγR-mediated phagocytosis signaling pathway was involved in the therapeutic effects of IVIg on CIM mice. WB results demonstrated that key proteins downstream of this pathway, Syk, PI3K, and Akt, showed increased phosphorylation in CIM mice, whereas IVIg treatment significantly reduced the phosphorylation levels. Furthermore, the inhibitory effects of IVIg on Dox-induced activation of the Syk/PI3K/Akt axis and ferroptosis, as well as its protective effects on intestinal inflammation and intestinal barrier damage, were reversed by 740Y-P (an PI3K activator) or SC79 (an Akt activator).Our findings highlight that IVIg ameliorates CIM by inhibiting ferroptosis via the Syk/PI3K/Akt axis. These results suggest that IVIg may represent a potential therapeutic approach for CIM.© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 2 区 生物学
小类 | 2 区 生化与分子生物学 3 区 细胞生物学
第一作者:
第一作者机构: [1]Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052 Chengdu, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:0 总访问量:4561 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号