高级检索
当前位置: 首页 > 详情页

Longitudinal CT Feature-Based Model for Predicting Local Recurrence Free Survival in Esophageal Cancer Patients Treated with Definitive Chemoradiotherapy: A Multicenter Study

| 认领 | 导出 |

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ CPCI(ISTP)

机构: [1]Fourth Mil Med Univ, Dept Radiat Oncol, Xijing Hosp, Xian, Shanxi, Peoples R China [2]Air Force Med Univ, Xijing Hosp, Dept Radiat Oncol, Xian, Peoples R China [3]Cent South Univ, Sch Comp Sci & Engn, Changsha, Peoples R China [4]Univ Elect Sci & Technol China, Radiat Oncol Key Lab Sichuan Prov, Sichuan Canc Hosp & Inst, Dept Radiat Oncol,Sch Med,Sichuan Canc Ctr, Chengdu, Peoples R China [5]Shandong Canc Hosp & Inst, Jinan, Shandong, Peoples R China
出处:
ISSN:

摘要:
Purpose/Objective(s): Accurate prediction of local recurrence-free survival (LRFS) remains a great challenge for esophageal squamous cell carcinoma (ESCC) patients receiving definitive chemoradiotherapy (dCRT). However, the integration of longitudinal data holds significant potential for improving predictive capabilities. This study aims to develop and validate a deep learning model that incorporates longitudinal CT scans to accurately predict LRFS in patients with ESCC following dCRT.

语种:
WOS:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 1 区 医学
小类 | 2 区 肿瘤学 2 区 核医学
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q1 ONCOLOGY Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Fourth Mil Med Univ, Dept Radiat Oncol, Xijing Hosp, Xian, Shanxi, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:0 总访问量:4561 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号