高级检索
当前位置: 首页 > 详情页

A multicenter dataset for lymph node clinical target volume delineation of nasopharyngeal carcinoma

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Univ Elect Sci & Technol China, Sichuan Canc Hosp & Inst, Sichuan Clin Res Ctr Canc, Sichuan Canc Ctr,Canc Hosp,Dept Radiat Oncol,Radia, Chengdu, Peoples R China [2]Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu, Peoples R China [3]Shanghai AI Lab, Shanghai, Peoples R China [4]Daguan Hosp Chengdu Jinjiang, Dept Radiat Oncol, Chengdu, Peoples R China [5]Southern Med Univ, Nanfang Hosp, Dept Radiat Oncol, Guangzhou, Peoples R China [6]Univ Sci & Technol China, Affiliated Hosp 1, Dept Radiat Oncol, Hefei, Peoples R China [7]Univ Elect Sci & Technol China, Sichuan Prov Peoples Hosp, Canc Ctr, Chengdu, Peoples R China
出处:
ISSN:

摘要:
The deep learning (DL)-based prediction of accurate lymph node (LN) clinical target volumes (CTVs) for nasopharyngeal carcinoma (NPC) radiotherapy (RT) remains challenging. One of the main reasons is the variability of contours despite standardization processes by expert guidelines in combination with scarce data sharing in the community. Therefore, we retrospectively generated a 262-subjects dataset from four centers to develop the DL models for LN CTVs delineation. This dataset included 440 computed tomography images from different scanning phases, disease stages and treatment strategies. Three clinical expert boards, each comprising two experts (totalling six experts), manually delineated six basic LN CTVs on separate cohorts as the ground truth according to LN involvement and clinical requirements. Several state-of-the-art segmentation algorithms were evaluated on this benchmark, showing promising results for LN CTV segmentation. In conclusion, this work built a multicenter LN CTV segmentation dataset, which may be the first dataset for automatic LN CTV delineation development and evaluation, serving as a benchmark for future research.

基金:

基金编号: 82203197 62271115 2023NSFSC1852 2023NSFSC0720 2023-803

语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 2 区 综合性期刊
小类 | 2 区 综合性期刊
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Univ Elect Sci & Technol China, Sichuan Canc Hosp & Inst, Sichuan Clin Res Ctr Canc, Sichuan Canc Ctr,Canc Hosp,Dept Radiat Oncol,Radia, Chengdu, Peoples R China [2]Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu, Peoples R China [3]Shanghai AI Lab, Shanghai, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:0 总访问量:4561 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号