高级检索
当前位置: 首页 > 详情页

Tumor-Resident Microbiota-Based Risk Model Predicts Neoadjuvant Therapy Response of Locally Advanced Esophageal Squamous Cell Carcinoma Patients

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Univ Elect Sci & Technol China, Sichuan Prov Peoples Hosp, Dept Oncol & Canc Inst, Sichuan Acad Med Sci, Chengdu 610072, Sichuan, Peoples R China [2]Univ Elect Sci & Technol China, Sichuan Canc Hosp & Inst, Sichuan Canc Ctr, Sch Med, Chengdu 610041, Sichuan, Peoples R China [3]Jinfeng Lab, Chongqing 400039, Peoples R China [4]Yu Yue Pathol Sci Res Ctr, Chongqing 400039, Peoples R China [5]Guangzhou Med Univ, Affiliated Hosp 1, Thorac Surg Dept, Guangzhou 510230, Guangdong, Peoples R China [6]Sichuan Univ, West China Sch Publ Hlth, Dept Oncol, Chengdu 610041, Sichuan, Peoples R China [7]Sichuan Univ, West China Hosp 4, Chengdu 610041, Sichuan, Peoples R China [8]Third Mil Med Univ, Army Med Univ, Southwest Hosp, Inst Pathol,Minist Educ China, Chongqing 400038, Peoples R China [9]Third Mil Med Univ, Army Med Univ, Southwest Hosp, Southwest Canc Ctr,Minist Educ China, Chongqing 400038, Peoples R China [10]Key Lab Tumor Immunopathol, Chongqing 400038, Peoples R China [11]Chengdu Univ Tradit Chinese Med, Acupuncture & Massage Coll, Chengdu 610072, Sichuan, Peoples R China
出处:
ISSN:

关键词: locally advanced esophageal squamous cell carcinoma neo-adjuvant therapy risk prediction model tumor-resident microbiota

摘要:
Few predictive biomarkers exist for identifying patients who may benefit from neoadjuvant therapy (NAT). The intratumoral microbial composition is comprehensively profiled to predict the efficacy and prognosis of patients with esophageal squamous cell carcinoma (ESCC) who underwent NAT and curative esophagectomy. Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis is conducted to screen for the most closely related microbiota and develop a microbiota-based risk prediction (MRP) model on the genera of TM7x, Sphingobacterium, and Prevotella. The predictive accuracy and prognostic value of the MRP model across multiple centers are validated. The MRP model demonstrates good predictive accuracy for therapeutic responses in the training, validation, and independent validation sets. The MRP model also predicts disease-free survival (p = 0.00074 in the internal validation set and p = 0.0017 in the independent validation set) and overall survival (p = 0.00023 in the internal validation set and p = 0.11 in the independent validation set) of patients. The MRP-plus model basing on MRP, tumor stage, and tumor size can also predict the patients who can benefit from NAT. In conclusion, the developed MRP and MRP-plus models may function as promising biomarkers and prognostic indicators accessible at the time of diagnosis. The microbiota-based risk prediction (MRP) model and the integrated MRP-plus model, incorporating MRP, tumor stage, and tumor size, are devised to discern patients suitable for neoadjuvant therapy (NAT) and prognostic outcomes for those with ESCC. Both the MRP and MRP-plus models can be practical and reliable tools for guiding treatment strategies in ESCC patients. image

基金:

基金编号: 92259102 82372597 CSTB2023NSCQ-LZX0050 2023YFC3402100

语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 1 区 材料科学
小类 | 1 区 化学:综合 1 区 材料科学:综合 2 区 纳米科技
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q1 CHEMISTRY, MULTIDISCIPLINARY Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Q1 NANOSCIENCE & NANOTECHNOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Univ Elect Sci & Technol China, Sichuan Prov Peoples Hosp, Dept Oncol & Canc Inst, Sichuan Acad Med Sci, Chengdu 610072, Sichuan, Peoples R China [2]Univ Elect Sci & Technol China, Sichuan Canc Hosp & Inst, Sichuan Canc Ctr, Sch Med, Chengdu 610041, Sichuan, Peoples R China [3]Jinfeng Lab, Chongqing 400039, Peoples R China [4]Yu Yue Pathol Sci Res Ctr, Chongqing 400039, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Univ Elect Sci & Technol China, Sichuan Prov Peoples Hosp, Dept Oncol & Canc Inst, Sichuan Acad Med Sci, Chengdu 610072, Sichuan, Peoples R China [3]Jinfeng Lab, Chongqing 400039, Peoples R China [4]Yu Yue Pathol Sci Res Ctr, Chongqing 400039, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:53699 今日访问量:0 总访问量:4607 更新日期:2025-02-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号