高级检索
当前位置: 首页 > 详情页

A pathology foundation model for cancer diagnosis and prognosis prediction

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 自然指数

机构: [1]Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA [2]Stanford Univ, Dept Radiat Oncol, Sch Med, Stanford, CA 94305 USA [3]Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA [4]Harvard MIT, Div Hlth Sci & Technol, Boston, MA USA [5]Sichuan Univ, Coll Biomed Engn, Chengdu, Peoples R China [6]Sun Yat Sen Univ Canc Ctr, Dept Pathol, Guangzhou, Peoples R China [7]Shenzhen Matern & Child Healthcare Hosp, Dept Pathol, Shenzhen, Peoples R China [8]Chongqing Univ Canc Hosp, Dept Radiat Oncol, Chongqing, Peoples R China [9]Chongqing Univ Canc Hosp, Dept Pathol, Chongqing, Peoples R China [10]Qingdao Univ, Affiliated Yantai Yuhuangding Hosp, Dept Pathol, Yantai, Peoples R China [11]Jinan Univ, Affiliated Hosp 1, Dept Pathol, Guangzhou, Peoples R China [12]Sun Yat Sen Univ, Affiliated Hosp 1, Dept Burn, Guangzhou, Peoples R China [13]Penn State Univ, Dept Pathol & Lab Med, Hummelstown, PA USA [14]Massachusetts Gen Hosp, Dept Pathol, Boston, MA USA [15]Tencent AI Lab, Shenzhen, Peoples R China [16]Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA [17]Dana Farber Canc Inst, Dept Med Oncol, Boston, MA USA [18]Dana Farber Canc Inst, Dept Pathol, Boston, MA USA [19]Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA USA [20]Broad Inst MIT & Harvard, Cambridge, MA USA [21]Cedars Sinai Med Ctr, Dept Pathol, Los Angeles, CA USA [22]Univ Penn, Dept Pathol & Lab Med, Perelman Sch Med, Philadelphia, PA USA [23]Harvard Univ, Harvard Data Sci Initiat, Cambridge, MA 02138 USA
出处:
ISSN:

摘要:
Histopathology image evaluation is indispensable for cancer diagnoses and subtype classification. Standard artificial intelligence methods for histopathology image analyses have focused on optimizing specialized models for each diagnostic task1,2. Although such methods have achieved some success, they often have limited generalizability to images generated by different digitization protocols or samples collected from different populations3. Here, to address this challenge, we devised the Clinical Histopathology Imaging Evaluation Foundation (CHIEF) model, a general-purpose weakly supervised machine learning framework to extract pathology imaging features for systematic cancer evaluation. CHIEF leverages two complementary pretraining methods to extract diverse pathology representations: unsupervised pretraining for tile-level feature identification and weakly supervised pretraining for whole-slide pattern recognition. We developed CHIEF using 60,530 whole-slide images spanning 19 anatomical sites. Through pretraining on 44 terabytes of high-resolution pathology imaging datasets, CHIEF extracted microscopic representations useful for cancer cell detection, tumour origin identification, molecular profile characterization and prognostic prediction. We successfully validated CHIEF using 19,491 whole-slide images from 32 independent slide sets collected from 24 hospitals and cohorts internationally. Overall, CHIEF outperformed the state-of-the-art deep learning methods by up to 36.1%, showing its ability to address domain shifts observed in samples from diverse populations and processed by different slide preparation methods. CHIEF provides a generalizable foundation for efficient digital pathology evaluation for patients with cancer. A study describes the development of a generalizable foundation machine learning framework to extract pathology imaging features for cancer diagnosis and prognosis prediction.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 1 区 综合性期刊
小类 | 1 区 综合性期刊
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA [2]Stanford Univ, Dept Radiat Oncol, Sch Med, Stanford, CA 94305 USA
共同第一作者:
通讯作者:
通讯机构: [1]Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA [2]Stanford Univ, Dept Radiat Oncol, Sch Med, Stanford, CA 94305 USA [16]Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA [23]Harvard Univ, Harvard Data Sci Initiat, Cambridge, MA 02138 USA
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:53080 今日访问量:0 总访问量:4588 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号