高级检索
当前位置: 首页 > 详情页

Cross-modal deep learning model for predicting pathologic complete response to neoadjuvant chemotherapy in breast cancer

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Harbin Med Univ, Dept Breast Surg, Canc Hosp, Harbin 150000, Peoples R China [2]Beihang Univ, Sch Comp, Beijing 100191, Peoples R China [3]Univ Elect Sci & Technol China, Sichuan Canc Ctr, Med & Lab Translat Res Ultrasound Theranost, Affiliated Canc Hosp, Chengdu 610041, Peoples R China [4]Sichuan Canc Hosp & Inst, Sichuan Clin Res Ctr Canc, Dept Ultrasound, Chengdu 610041, Peoples R China [5]Harbin Med Univ, Dept Pathol, Canc Hosp, Harbin 150000, Peoples R China
出处:
ISSN:

摘要:
Pathological complete response (pCR) serves as a critical measure of the success of neoadjuvant chemotherapy (NAC) in breast cancer, directly influencing subsequent therapeutic decisions. With the continuous advancement of artificial intelligence, methods for early and accurate prediction of pCR are being extensively explored. In this study, we propose a cross-modal multi-pathway automated prediction model that integrates temporal and spatial information. This model fuses digital pathology images from biopsy specimens and multi-temporal ultrasound (US) images to predict pCR status early in NAC. The model demonstrates exceptional predictive efficacy. Our findings lay the foundation for developing personalized treatment paradigms based on individual responses. This approach has the potential to become a critical auxiliary tool for the early prediction of NAC response in breast cancer patients.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 1 区 医学
小类 | 2 区 肿瘤学
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q1 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Harbin Med Univ, Dept Breast Surg, Canc Hosp, Harbin 150000, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:1 总访问量:4560 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号