高级检索
当前位置: 首页 > 详情页

Focal liver lesion diagnosis with deep learning and multistage CT imaging

文献详情

资源类型:
Pubmed体系:

收录情况: ◇ 自然指数

机构: [1]Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China [2]School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China. [3]Department of Radiology, Sanya People’s Hospital, Sanya, Hainan, China. [4]Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou, Henan, China. [5]Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China. [6]Department of Radiology, Leshan People’s Hospital, Leshan, Sichuan, China. [7]Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China. [8]Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang, China. [9]Yangtze Delta Region Institute(Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China.
出处:

摘要:
Diagnosing liver lesions is crucial for treatment choices and patient outcomes. This study develops an automatic diagnosis system for liver lesions using multiphase enhanced computed tomography (CT). A total of 4039 patients from six data centers are enrolled to develop Liver Lesion Network (LiLNet). LiLNet identifies focal liver lesions, including hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), metastatic tumors (MET), focal nodular hyperplasia (FNH), hemangioma (HEM), and cysts (CYST). Validated in four external centers and clinically verified in two hospitals, LiLNet achieves an accuracy (ACC) of 94.7% and an area under the curve (AUC) of 97.2% for benign and malignant tumors. For HCC, ICC, and MET, the ACC is 88.7% with an AUC of 95.6%. For FNH, HEM, and CYST, the ACC is 88.6% with an AUC of 95.9%. LiLNet can aid in clinical diagnosis, especially in regions with a shortage of radiologists.© 2024. The Author(s).

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 1 区 综合性期刊
小类 | 1 区 综合性期刊
第一作者:
第一作者机构: [1]Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
共同第一作者:
通讯作者:
通讯机构: [1]Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China [3]Department of Radiology, Sanya People’s Hospital, Sanya, Hainan, China. [8]Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang, China. [9]Yangtze Delta Region Institute(Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:0 总访问量:4561 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号