高级检索
当前位置: 首页 > 详情页

Establishment of a risk prediction model for olfactory disorders in patients with transnasal pituitary tumors by machine learning

文献详情

资源类型:
Pubmed体系:
机构: [1]Department of Neurosurgery, Deyang People’s Hospital, Deyang 618000, China. [2]School of Nursing, North Sichuan Medical College, Nanchong 637000, China. [3]Department of Nursing, Deyang People’s Hospital, Deyang 618000, Sichuan, China. [4]Institute of Complex Systems, Shanxi University, Taiyuan 030001, China [5]Sichuan Nursing Vocational College, Chengdu 610110, China.
出处:

关键词: Pituitary tumor Olfactory impairment Transnasal pterygoid region Machine learning Predictive models

摘要:
To construct a prediction model of olfactory dysfunction after transnasal sellar pituitary tumor resection based on machine learning algorithms. A cross-sectional study was conducted. From January to December 2022, 158 patients underwent transnasal sellar pituitary tumor resection in three tertiary hospitals in Sichuan Province were selected as the research objects. The olfactory status was evaluated one week after surgery. They were randomly divided into a training set and a test set according to the ratio of 8:2. The training set was used to construct the prediction model, and the test set was used to evaluate the effect of the model. Based on different machine learning algorithms, BP neural network, logistic regression, decision tree, support vector machine, random forest, LightGBM, XGBoost, and AdaBoost were established to construct olfactory dysfunction risk prediction models. The accuracy, precision, recall, F1 score, and area under the ROC curve (AUC) were used to evaluate the model's prediction performance, the optimal prediction model algorithm was selected, and the model was verified in the test set of patients. Of the 158 patients, 116 (73.42%) had postoperative olfactory dysfunction. After missing value processing and feature screening, an essential order of influencing factors of olfactory dysfunction was obtained. Among them, the duration of operation, gender, type of pituitary tumor, pituitary tumor apoplexy, nasal adhesion, age, cerebrospinal fluid leakage, blood scar formation, and smoking history became the risk factors of olfactory dysfunction, which were the key indicators of the construction of the model. Among them, the random forest model had the highest AUC of 0.846, and the accuracy, precision, recall, and F1 score were 0.750, 0.870, 0.947, and 0.833, respectively. Compared with the BP neural network, logistic regression, decision tree, support vector machine, LightGBM, XGBoost, and AdaBoost, the random forest model has more advantages in predicting olfactory dysfunction in patients after transnasal sellar pituitary tumor resection, which is helpful for early identification and intervention of high-risk clinical population, and has good clinical application prospects.© 2024. The Author(s).

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 2 区 综合性期刊
小类 | 2 区 综合性期刊
第一作者:
第一作者机构: [1]Department of Neurosurgery, Deyang People’s Hospital, Deyang 618000, China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:2 总访问量:4561 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号