高级检索
当前位置: 首页 > 详情页

Risk factors for prostate cancer: An umbrella review of prospective observational studies and mendelian randomization analyses

文献详情

资源类型:
Pubmed体系:
机构: [1]Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China. [2]Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China. [3]Department of Iatrical Polymer Material and Artificial Apparatus, School of Polymer Science and Engineering, Sichuan University, Chengdu, China. [4]Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China. [5]Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China. [6]Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden. [7]Departments of Cardiology, Neurology, and Oncology, Hainan General Hospital and Hainan Affiliated Hospital, Hainan Medical University, Haikou, China.
出处:
ISSN:

摘要:
The incidence of prostate cancer is increasing in older males globally. Age, ethnicity, and family history are identified as the well-known risk factors for prostate cancer, but few modifiable factors have been firmly established. The objective of this study was to identify and evaluate various factors modifying the risk of prostate cancer reported in meta-analyses of prospective observational studies and mendelian randomization (MR) analyses.We searched PubMed, Embase, and Web of Science from the inception to January 10, 2022, updated on September 9, 2023, to identify meta-analyses and MR studies on prostate cancer. Eligibility criteria for meta-analyses were (1) meta-analyses including prospective observational studies or studies that declared outcome-free at baseline; (2) evaluating the factors of any category associated with prostate cancer incidence; and (3) providing effect estimates for further data synthesis. Similar criteria were applied to MR studies. Meta-analysis was repeated using the random-effects inverse-variance model with DerSimonian-Laird method. Quality assessment was then conducted for included meta-analyses using AMSTAR-2 tool and for MR studies using STROBE-MR and assumption evaluation. Subsequent evidence grading criteria for significant associations in meta-analyses contained sample size, P values and 95% confidence intervals, 95% prediction intervals, heterogeneity, and publication bias, assigning 4 evidence grades (convincing, highly suggestive, suggestive, or weak). Significant associations in MR studies were graded as robust, probable, suggestive, or insufficient considering P values and concordance of effect directions. Finally, 92 selected from 411 meta-analyses and 64 selected from 118 MR studies were included after excluding the overlapping and outdated studies which were published earlier and contained fewer participants or fewer instrument variables for the same exposure. In total, 123 observational associations (45 significant and 78 null) and 145 causal associations (55 significant and 90 null) were categorized into lifestyle; diet and nutrition; anthropometric indices; biomarkers; clinical variables, diseases, and treatments; and environmental factors. Concerning evidence grading on significant associations, there were 5 highly suggestive, 36 suggestive, and 4 weak associations in meta-analyses, and 10 robust, 24 probable, 4 suggestive, and 17 insufficient causal associations in MR studies. Twenty-six overlapping factors between meta-analyses and MR studies were identified, with consistent significant effects found for physical activity (PA) (occupational PA in meta: OR = 0.87, 95% CI: 0.80, 0.94; accelerator-measured PA in MR: OR = 0.49, 95% CI: 0.33, 0.72), height (meta: OR = 1.09, 95% CI: 1.06, 1.12; MR: OR = 1.07, 95% CI: 1.01, 1.15, for aggressive prostate cancer), and smoking (current smoking in meta: OR = 0.74, 95% CI: 0.68, 0.80; smoking initiation in MR: OR = 0.91, 95% CI: 0.86, 0.97). Methodological limitation is that the evidence grading criteria could be expanded by considering more indices.In this large-scale study, we summarized the associations of various factors with prostate cancer risk and provided comparisons between observational associations by meta-analysis and genetically estimated causality by MR analyses. In the absence of convincing overlapping evidence based on the existing literature, no robust associations were identified, but some effects were observed for height, physical activity, and smoking.Copyright: © 2024 Cui et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 1 区 医学
小类 | 1 区 医学:内科
第一作者:
第一作者机构: [1]Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
共同第一作者:
通讯作者:
通讯机构: [1]Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China. [5]Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China. [6]Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:2 总访问量:4561 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号