高级检索
当前位置: 首页 > 详情页

Targeted Cyclo[8]pyrrole-Based NIR-II Photoacoustic Tomography Probe for Suppression of Orthotopic Pancreatic Tumor Growth and Intra-abdominal Metastases

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 自然指数

机构: [1]Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. [2]Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China. [3]Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, China. [4]Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610064, China. [5]Department of Chemistry, University of Texas at Austin, 105 East 24th Street A5300, Austin, Texas 78712-1224, United States. [6]Department of Chemistry, Kings College London, 7 Trinity Street, London SE1 1DB, U.K. [7]Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China.
出处:
ISSN:

摘要:
Pancreatic cancer is highly lethal. New diagnostic and treatment modalities are desperately needed. We report here that an expanded porphyrin, cyclo[8]pyrrole (CP), with a high extinction coefficient (89.16 L/g·cm) within the second near-infrared window (NIR-II), may be formulated with an αvβ3-specific targeting peptide, cyclic-Arg-Gly-Asp (cRGD), to form cRGD-CP nanoparticles (cRGD-CPNPs) with promising NIR-II photothermal (PT) therapeutic and photoacoustic (PA) imaging properties. Studies with a ring-array PA tomography system, coupled with analysis of control nanoparticles lacking a targeting element (CPNPs), revealed that cRGD conjugation promoted the delivery of the NPs through abnormal vessels around the tumor to the solid tumor core. This proved true in both subcutaneous and orthotopic pancreatic tumor mice models, as confirmed by immunofluorescent studies. In combination with NIR-II laser photoirradiation, the cRGD-CPNPs provided near-baseline tumor growth inhibition through PTT both in vitro and in vivo. Notably, the combination of the present cRGD-CPNPs and photoirradiation was found to inhibit intra-abdominal metastases in an orthotopic pancreatic tumor mouse model. The cRGD-CPNPs also displayed good biosafety profiles, as inferred from PA tomography, blood analyses, and H&E staining. They thus appear promising for use in combined PA imaging and PT therapeutic treatment of pancreatic cancer.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 1 区 化学
小类 | 1 区 化学:综合
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q1 CHEMISTRY, MULTIDISCIPLINARY

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
共同第一作者:
通讯作者:
通讯机构: [2]Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China. [3]Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:0 总访问量:4561 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号