高级检索
当前位置: 首页 > 详情页

A fusion model integrating magnetic resonance imaging radiomics and deep learning features for predicting alpha-thalassemia X-linked intellectual disability mutation status in isocitrate dehydrogenase-mutant high-grade astrocytoma: a multicenter study

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Radiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China. [2]Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China. [3]College of Computer & Information Science, Southwest University, Chongqing, China. [4]Department of Endocrinology, University-Town Hospital of Chongqing Medical University, Chongqing, China. [5]School of Medical and Life Sciences Chengdu University of Traditional Chinese Medicine, Chengdu, China. [6]Department of Radiology, Chongqing United Medical Imaging Center, Chongqing, China. [7]Department of Radiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
出处:
ISSN:

关键词: Radiomics deep learning (DL) magnetic resonance imaging (MRI) brain neoplasms astrocytoma

摘要:
The mutational status of alpha-thalassemia X-linked intellectual disability (ATRX) is an important indicator for the treatment and prognosis of high-grade gliomas, but reliable ATRX testing currently requires invasive procedures. The objective of this study was to develop a clinical trait-imaging fusion model that combines preoperative magnetic resonance imaging (MRI) radiomics and deep learning (DL) features with clinical variables to predict ATRX status in isocitrate dehydrogenase (IDH)-mutant high-grade astrocytoma.A total of 234 patients with IDH-mutant high-grade astrocytoma (120 ATRX mutant type, 114 ATRX wild type) from 3 centers were retrospectively analyzed. Radiomics and DL features from different regions (edema, tumor, and the overall lesion) were extracted to construct multiple imaging models by combining different features in different regions for predicting ATRX status. An optimal imaging model was then selected, and its features and linear coefficients were used to calculate an imaging score. Finally, a fusion model was developed by combining the imaging score and clinical variables. The performance and application value of the fusion model were evaluated through the comparison of receiver operating characteristic curves, the construction of a nomogram, calibration curves, decision curves, and clinical application curves.The overall hybrid model constructed with radiomics and DL features from the overall lesion was identified as the optimal imaging model. The fusion model showed the best prediction performance with an area under curve of 0.969 in the training set, 0.956 in the validation set, and 0.949 in the test set as compared to the optimal imaging model (0.966, 0.916, and 0.936, respectively) and clinical model (0.677, 0.641, 0.772, respectively).The clinical trait-imaging fusion model based on preoperative MRI could effectively predict the ATRX mutation status of individuals with IDH-mutant high-grade astrocytoma and has the potential to help patients through the development of a more effective treatment strategy before treatment.2024 Quantitative Imaging in Medicine and Surgery. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 2 区 医学
小类 | 3 区 核医学
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Department of Radiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

相关文献

资源点击量:52808 今日访问量:1 总访问量:4560 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号