高级检索
当前位置: 首页 > 详情页

Predicting cutaneous malignant melanoma patients' survival using deep learning: a retrospective cohort study

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Dermatology Department, General Hospital of Western Theater Command PLA, No. 270, Rongdu Avenue, Chengdu 610083, Sichuan, China [2]Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, No. 9 Beiguan Street, Tongzhou District, Beijing 101149, China [3]Department of Respiratory and Critical Care Medicine, General Hospital of Western Theater Command, No. 270 Rongdu Avenue, Chengdu 610083, Sichuan, China [4]Dermatology Department, Medical Center Hospital of Qionglai City, No. 172 Xinglin Road, Qionglai City, Chengdu 611500, Sichuan, China
出处:
ISSN:

摘要:
Cutaneous malignant melanoma (CMM) has the worst prognosis among skin cancers, especially metastatic CMM. Predicting its prognosis accurately could direct clinical decisions.The Surveillance, Epidemiology, and End Results database was screened to collect CMM patients' data. According to diagnosed time, patients were subdivided into three cohorts, train cohort (diagnosed between 2010 and 2013), validation cohort (diagnosed in 2014), and test cohort (diagnosed in 2015). Train cohort was used to train deep learning survival model for cutaneous malignant melanoma (DeepCMM). DeepCMM was then evaluated in train cohort and validation cohort internally, and validated in test cohort externally.DeepCMM showed 0.8270 (95% CI, confidence interval, CI 0.8260-0.8280) as area under the receiver operating characteristic curve (AUC) in train cohort, 0.8274 (95% CI 0.8286-0.8298) AUC in validation cohort, and 0.8303 (95% CI 0.8289-0.8316) AUC in test cohort. Then DeepCMM was packaged into a Windows 64-bit software for doctors to use.Deep learning survival model for cutaneous malignant melanoma (DeepCMM) can offer a reliable prediction on cutaneous malignant melanoma patients' overall survival.© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 3 区 医学
小类 | 4 区 肿瘤学
最新[2023]版:
大类 | 3 区 医学
小类 | 4 区 肿瘤学
JCR分区:
出版当年[2023]版:
Q3 ONCOLOGY
最新[2023]版:
Q3 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Dermatology Department, General Hospital of Western Theater Command PLA, No. 270, Rongdu Avenue, Chengdu 610083, Sichuan, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:2 总访问量:4561 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号