高级检索
当前位置: 首页 > 详情页

Machine learning‑based prediction of survival prognosis in esophageal squamous cell carcinoma

| 导出 | |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Afliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China [2]Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Afliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China [3]Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
出处:
ISSN:

摘要:
The current prognostic tools for esophageal squamous cell carcinoma (ESCC) lack the necessary accuracy to facilitate individualized patient management strategies. To address this issue, this study was conducted to develop a machine learning (ML) prediction model for ESCC patients' survival management. Six ML approaches, including Rpart, Elastic Net, GBM, Random Forest, GLMboost, and the machine learning-extended CoxPH method, were employed to develop risk prediction models. The model was trained on a dataset of 1954 ESCC patients with 27 clinical features and validated on a dataset of 487 ESCC patients. The discriminative performance of the models was assessed using the concordance index (C-index). The best performing model was used for risk stratification and clinical evaluation. The study found that N stage, T stage, surgical margin, tumor grade, tumor length, sex, MPV, AST, FIB, and Mg are the important feature for ESCC patients' survival. The machine learning-extended CoxPH model, Elastic Net, and Random Forest had similar performance in predicting the mortality risk of ESCC patients, and outperformed GBM, GLMboost, and Rpart. The risk scores derived from the CoxPH model effectively stratified ESCC patients into low-, intermediate-, and high-risk groups with distinctly different 3-year overall survival (OS) probabilities of 80.8%, 58.2%, and 29.5%, respectively. This risk stratification was also observed in the validation cohort. Furthermore, the risk model demonstrated greater discriminative ability and net benefit than the AJCC8th stage, suggesting its potential as a prognostic tool for predicting survival events and guiding clinical decision-making. The classical algorithm of the CoxPH method was also found to be sufficiently good for interpretive studies.© 2023. Springer Nature Limited.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 综合性期刊
小类 | 2 区 综合性期刊
最新[2023]版:
大类 | 2 区 综合性期刊
小类 | 2 区 综合性期刊
JCR分区:
出版当年[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Afliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:53080 今日访问量:0 总访问量:4588 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号