高级检索
当前位置: 首页 > 详情页

A systematic pharmacology-based in vivo study to reveal the effective mechanism of Yupingfeng in asthma treatment

文献详情

资源类型:
Pubmed体系:
机构: [1]Division of Pulmonary Diseases, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan, PR. China [2]Department of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, Sichuan University, 1 Keyuansi Road, Chengdu, Sichuan, PR. China [3]Animal Experimental Center, West China Hospital, Sichuan University, 1 Keyuansi Road, Chengdu, Sichuan, PR. China
出处:
ISSN:

关键词: Traditional chinese medicine Systems pharmacology Molecular docking Wogonin

摘要:
The clinical effect of Yupingfeng (YPF) has been confirmed in asthma patients, however, it lacks a study to verify its pharmacological mechanism.To reveal the molecular basis and potential pharmacological mechanism of YPF in the treatment of asthma.First, a systems pharmacology-based method integrating pharmacokinetic screening, target prediction, network analyses, GO and KEGG analyses were used for the systematic deciphering of the mechanism of YPF in asthma. Second, differentially expressed genes (DEGs) between asthma patients and healthy controls were identified by GEO2R online tool. Third, based on systems pharmacology and DEGs results, molecular docking was performed utilizing the Discovery Studio 2020 Client version to detect the binding capacity between compounds and targets. Finally, ovalbumin (OVA)-challenged C57BL/6 mice were treated with YPF or its effective compound to assess the predictions.A total of 35 active compounds were filtered out, with 87 potential targets being identified for further analysis after target fishing and matching. Quercetin, kaempferol, and wogonin were identified as the main ingredients in YPF. The signaling pathways of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), tumor necrosis factor (TNF) and IL-17 were identified as the top signaling pathways in KEGG enrichment analysis. GEO2R tools of NCBI discovered five DEGs that overlapped with the therapeutic targets of YPF. Wogonin was proven to be the top active compound in YPF through the results of molecular docking. In vivo experiments indicated that YPF and wogonin significantly attenuated airway resistance and lung inflammation by decreasing the levels of inflammatory cytokines and key factors in PI3K/AKT, IL-17, and TNF signaling pathways.YPF and its main active compound wogonin may exert some therapeutic effects on asthma inflammation through multiple molecular targets and signaling pathways including PI3K/AKT, IL-17 and TNF-α.Copyright © 2023 The Author(s). Published by Elsevier GmbH.. All rights reserved.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 医学
小类 | 1 区 药物化学 1 区 全科医学与补充医学 1 区 药学 1 区 植物科学
最新[2023]版:
大类 | 1 区 医学
小类 | 1 区 药物化学 1 区 全科医学与补充医学 1 区 药学 1 区 植物科学
第一作者:
第一作者机构: [1]Division of Pulmonary Diseases, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan, PR. China [2]Department of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, Sichuan University, 1 Keyuansi Road, Chengdu, Sichuan, PR. China
共同第一作者:
通讯作者:
通讯机构: [1]Division of Pulmonary Diseases, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan, PR. China [2]Department of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, Sichuan University, 1 Keyuansi Road, Chengdu, Sichuan, PR. China [*1]Division of Pulmonary Diseases, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:43389 今日访问量:0 总访问量:3120 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号