高级检索
当前位置: 首页 > 详情页

Path planning for percutaneous lung biopsy based on the loose-Pareto and adaptive heptagonal optimization method

文献详情

资源类型:
Pubmed体系:
机构: [1]College of Biomedical Engineering, Sichuan University, Chengdu 610065, China [2]Department of Radiology, Zigong First People’s Hospital, Zigong 643000, China [3]Beijing Institute of Remote Sensing Information, Beijing 100011, China [4]School of Nursing, The Hong Kong Polytechnic University, Hong Kong 999077, China
出处:
ISSN:

摘要:
Lung cancer has is highly prevalent worldwide and is the leading cause of cancer-related deaths. In the clinic, a biopsy sample of the lesion is taken to determine whether a lung mass is benign or malignant. CT-guided percutaneous lung biopsy is a minimally invasive intervention and is commonly used to diagnose lung cancer. Path planning before surgery plays a crucial role in percutaneous lung biopsy. Traditionally, path planning for lung biopsy is performed manually by physicians based on CT images of the patient, which demands knowledge and extensive clinical experience of the operating physicians. In this work, a computer-assisted path planning system for percutaneous lung biopsy is proposed based on clinical objectives. Five constraints are presented to remove unqualified skin entry points and determine a feasible entry region based on clinical criteria. Inspired by the Pareto principle and the concept of geometric weighting, the loose-Pareto and adaptive heptagonal optimization (LPHO) method is introduced to plan the optimal puncture path. CT images of 29 patients were collected from Zigong First People's Hospital. Retrospective experiments and test experiments were conducted to evaluate the effectiveness of the algorithm. The planning paths obtained using the proposed method were clinically feasible for 89.7% of patients, demonstrating the applicability and robustness of the system in surgical path planning for lung biopsy.© 2023. International Federation for Medical and Biological Engineering.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 4 区 医学
小类 | 2 区 数学与计算生物学 4 区 计算机:跨学科应用 4 区 工程:生物医学 4 区 医学:信息
最新[2023]版:
大类 | 4 区 医学
小类 | 2 区 数学与计算生物学 4 区 计算机:跨学科应用 4 区 工程:生物医学 4 区 医学:信息
第一作者:
第一作者机构: [1]College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:43389 今日访问量:0 总访问量:3120 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号