高级检索
当前位置: 首页 > 详情页

Carrier-Free Nanoplatform via Evoking Pyroptosis and Immune Response against Breast Cancer

文献详情

资源类型:
Pubmed体系:
机构: [1]School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. [2]State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China. [3]The Affiliated Hospital of Ningbo University School of Medicine, Ningbo 315020, China. [4]Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China. [5]Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia. [6]Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, China.
出处:
ISSN:

关键词: pyroptosis chemo-photodynamic therapy carrier-free immunotherapy breast cancer

摘要:
Pyroptosis, as a novel mode of cell death, has been proven to have impressive antitumor effects. Dying cells undergoing pyroptosis can elicit antitumor immunity by the release of tumor-associated antigens (TAAs) and damage-associated molecular patterns (DAMPs). Accordingly, developing an effective, stable, and controllable nanoplatform that can promote these two side effects is a promising option for cancer therapy. In this study, we designed a carrier-free chemo-photodynamic nanoplatform (A-C/NPs) using a co-assembly strategy with cytarabine (Ara-C) and chlorin e6 (Ce6) to induce pyroptosis and a subsequent immune response against breast cancer. Mechanistically, A-C/NPs can trigger GSDME-mediated pyroptosis in a controllable manner through reactive oxygen species (ROS) accumulation, causing immunogenic cell death (ICD), in which dying cells release high-mobility group box 1 (HMGB1), adenosine triphosphate (ATP), and calcitonin (CRT). Additionally, Ara-C can stimulate the maturation of cytotoxic T lymphocytes to act synergistically with Ce6-mediated immunogenic cell death (ICD), collectively augmenting the anticancer effect of A-C/NPs. The A-C/NPs showed excellent suppressive effects on the growth of orthotopic, abscopal, and recurrent tumors in a breast cancer mouse model. The chemo-photodynamic therapy (PDT) using the proposed nanomedicine strategy could be a novel strategy for triggering pyroptosis and improving the global anticancer immune response.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 材料科学
小类 | 2 区 纳米科技 2 区 材料科学:综合
最新[2023]版:
大类 | 2 区 材料科学
小类 | 2 区 材料科学:综合 2 区 纳米科技
第一作者:
第一作者机构: [1]School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:43389 今日访问量:0 总访问量:3120 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号