高级检索
当前位置: 首页 > 详情页

Carbon Dioxide Microbubble Bursting Ionization Mass Spectrometry

文献详情

资源类型:
Pubmed体系:

收录情况: ◇ 自然指数

机构: [1]Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang310027, P. R. China. [2]College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan610068, P. R. China. [3]Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310009, P. R. China.
出处:
ISSN:

摘要:
Aerosols generated by bubble bursting have been proved to promote the extraction of analytes and have ultrahigh electric fields at their water-air interfaces. This study presented a simple and efficient ionization method, carbon dioxide microbubble bursting ionization (CDMBI), without the presence of an exogenous electric field (namely, zero voltage), by simulating the interfacial chemistries of sea spray aerosols. In CDMBI, microbubbles are generated in situ by continuous input of carbon dioxide into an aqueous solution containing low-concentration analytes. The microbubbles extract low- and high-polarity analytes as they pass through the aqueous solution. Upon reaching the water-air interface, these microbubbles burst to produce charged aerosol microdroplets with an average diameter of 260 μm (8.1-10.4 nL in volume), which are immediately transferred to a mass spectrometer for the detection and identification of extracted analytes. The above analytical process occurs every 4.2 s with a stable total ion chromatogram (relative standard deviation: 9.4%) recorded. CDMBI mass spectrometry (CDMBI-MS) can detect surface-active organic compounds in aerosol microdroplets, such as perfluorooctanoic acid, free fatty acids epoxidized by bubble bursting, sterols, and lecithins in soybean and egg, with the limit of detection reaching the level of fg/mL. In addition, coupling CDMBI-MS with an exogenous voltage yields relatively weak gains in ionization efficiency and sensitivity of analysis. The results suggested that CDMBI can simultaneously accomplish both bubbling extraction and microbubble bursting ionization. The mechanism of CDMBI involves bubbling extraction, proton transfer, inlet ionization, and electrospray-like ionization. Overall, CDMBI-MS can work in both positive and negative ion modes without necessarily needing an exogenous high electric field for ionization and quickly detect trace surface-active analytes in aqueous solutions.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 化学
小类 | 1 区 分析化学
最新[2023]版:
大类 | 1 区 化学
小类 | 1 区 分析化学
第一作者:
第一作者机构: [1]Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang310027, P. R. China. [2]College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan610068, P. R. China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:43370 今日访问量:0 总访问量:3120 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号