高级检索
当前位置: 首页 > 详情页

Predicting neoadjuvant chemotherapy benefit using deep learning from stromal histology in breast cancer

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Pathology, West China Hospital, Sichuan University, Chengdu, China. [2]Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China. [3]Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China. [4]Department of Pathology, Sichuan Provincial People's Hospital, Chengdu, China. [5]Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
出处:
ISSN:

摘要:
Neoadjuvant chemotherapy (NAC) is a standard treatment option for locally advanced breast cancer. However, not all patients benefit from NAC; some even obtain worse outcomes after therapy. Hence, predictors of treatment benefit are crucial for guiding clinical decision-making. Here, we investigated the predictive potential of breast cancer stromal histology via a deep learning (DL)-based approach and proposed the tumor-associated stroma score (TS-score) for predicting pathological complete response (pCR) to NAC with a multicenter dataset. The TS-score was demonstrated to be an independent predictor of pCR, and it not only outperformed the baseline variables and stromal tumor-infiltrating lymphocytes (sTILs) but also significantly improved the prediction performance of the baseline variable-based model. Furthermore, we discovered that unlike lymphocytes, collagen and fibroblasts in the stroma were likely associated with a poor response to NAC. The TS-score has the potential to better stratify breast cancer patients in NAC settings.© 2022. The Author(s).

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 医学
小类 | 2 区 肿瘤学
最新[2023]版:
大类 | 2 区 医学
小类 | 2 区 肿瘤学
JCR分区:
出版当年[2022]版:
Q1 ONCOLOGY
最新[2023]版:
Q1 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Department of Pathology, West China Hospital, Sichuan University, Chengdu, China. [2]Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China.
共同第一作者:
通讯作者:
通讯机构: [1]Department of Pathology, West China Hospital, Sichuan University, Chengdu, China. [2]Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:0 总访问量:4561 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号