高级检索
当前位置: 首页 > 详情页

UBE2O promotes lipid metabolic reprogramming and liver cancer progression by mediating HADHA ubiquitination

文献详情

资源类型:
Pubmed体系:
机构: [1]Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041 Sichuan, China [2]State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041 Sichuan, China [3]Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041 Sichuan, China
出处:
ISSN:

摘要:
Cancer cells rely on heightened protein quality control mechanisms, including the ubiquitin-proteosome system that is predominantly driven by ubiquitination comprising E1, E2, and E3 trienzyme cascades. Although E3s have been extensively studied, the implication of E2s in tumorigenesis is poorly defined. Here we reveal a critical E2 in the pathogenesis of hepatocellular carcinoma (HCC). Among all of E2s, UBE2O shows the strongest association with HCC survival prognosis, and its expression is increased in HCC tumors. Accordingly, UBE2O deficiency inhibits HCC growth and metastasis both in vitro and in vivo, while its overexpression has opposite effects. Depending on both E2 and E3 enzymatic activities, UBE2O can interact with and mediate the ubiquitination and degradation of HADHA, a mitochondrial β-oxidation enzyme, thereby modulating lipid metabolic reprogramming. HADHA is reduced in HCC tumors and inversely correlated with UBE2O levels. Importantly, HADHA acts as a tumor suppressor and primarily mediates UBE2O's function on HCC. Moreover, liver-specific deletion of Ube2o in mice are resistant to DEN-induced hepatocarcinogenesis, along with HADHA upregulation and reduced hepatic lipid accumulation. These data reveal UBE2O as a novel oncogenic driver for metabolic reprogramming and HCC development, highlighting the potential of targeting UBE2O/HADHA axis for HCC therapy.© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 医学
小类 | 1 区 遗传学 1 区 生化与分子生物学 1 区 肿瘤学 2 区 细胞生物学
最新[2023]版:
大类 | 1 区 医学
小类 | 1 区 生化与分子生物学 1 区 遗传学 2 区 细胞生物学 2 区 肿瘤学
第一作者:
第一作者机构: [1]Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041 Sichuan, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:43377 今日访问量:0 总访问量:3120 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号