高级检索
当前位置: 首页 > 详情页

Optimization of anesthetic decision-making in ERAS using Bayesian network

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 预警期刊

机构: [1]Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences (CAS), Chongqing, China, [2]Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China, [3]Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China, [4]Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China, [5]Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
出处:
ISSN:

关键词: Bayesian network enhanced recovery after surgery decision-making gynecological tumor machine learning

摘要:
Enhanced recovery after surgery (ERAS) can accelerate patient recovery. However, little research has been done on optimizing the ERAS-related measures and how the measures interact with each other. The Bayesian network (BN) is a graphical model that describes the dependencies between variables and is also a model for uncertainty reasoning. In this study, we aimed to develop a method for optimizing anesthetic decisions in ERAS and then investigate the relationship between anesthetic decisions and outcomes. First, assuming that the indicators used were independent, the effects of combinations of single indicators were analyzed based on BN. Additionally, the impact indicators for outcomes were selected with statistical tests. Then, based on the previously selected indicators, the Bayesian network was constructed using the proposed structure learning method based on Strongly Connected Components (SCC) Local Structure determination by Hill Climbing Twice (LSHCT) and adjusted according to the expert's knowledge. Finally, the relationship is analyzed. The proposed method is validated by the real clinical data of patients with benign gynecological tumors from 3 hospitals in China. Postoperative length of stay (LOS) and total cost (TC) were chosen as the outcomes. Experimental results show that the ERAS protocol has some pivotal indicators influencing LOS and TC. Identifying the relationship between these indicators can help anesthesiologists optimize the ERAS protocol and make individualized decisions.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 3 区 医学
小类 | 3 区 医学:内科
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 医学:内科
JCR分区:
出版当年[2022]版:
Q2 MEDICINE, GENERAL & INTERNAL
最新[2023]版:
Q1 MEDICINE, GENERAL & INTERNAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences (CAS), Chongqing, China,
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:2 总访问量:4561 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号