高级检索
当前位置: 首页 > 详情页

Identification of a BRAF/PA28γ/MEK1 signaling axis and its role in epithelial-mesenchymal transition in oral submucous fibrosis

文献详情

资源类型:
Pubmed体系:
机构: [1]State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stom atology, Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China. [2]Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Postdoctoral Research Workstation, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan 410078, People’s Republic of China. [3]State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, People’s Republic of China.
出处:

摘要:
Oral submucous fibrosis (OSF) is a chronic and insidious oral potentially malignant disorder associated with a 4-17% risk of oral squamous cell carcinoma (OSCC). Our previous study found that proteasomal activator 28 gamma (PA28γ) is frequently overexpressed in oral squamous cell carcinoma and negatively correlated with poor patient prognosis. However, the role of PA28γ in the occurrence and development of OSF remains unclear. Here, we screened PA28γ-related genes and investigated their function in OSF. We demonstrated that the expression of PA28γ was positively associated with MEK1 and gradually elevated from normal to progressive stages of OSF tissue. Arecoline, a pathogenic component of OSF, could upregulate the protein levels of PA28γ and phosphorylated MEK1 and contribute to epithelial to mesenchymal transition (EMT) in epithelial cells. Notably, PA28γ could interact with MEK1 and upregulate its phosphorylation level. Furthermore, arecoline upregulated BRAF, which can interact with PA28γ and upregulate its protein level. Additionally, BRAF, PA28γ, and MEK1 could form protein complexes and then enhance the MEK1/ERK signaling pathways. The concrete mechanism of the protein stability of PA28γ is that BRAF mediates its degradation by inhibiting its ubiquitination. These findings underscore the instrumental role of PA28γ in the BRAF/MEK1 pathway and enhanced EMT through MEK1/ERK activation in OSF.© 2022. The Author(s).

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 生物学
小类 | 2 区 细胞生物学
最新[2025]版:
大类 | 1 区 生物学
小类 | 2 区 细胞生物学
第一作者:
第一作者机构: [1]State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stom atology, Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China. [2]Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Postdoctoral Research Workstation, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan 410078, People’s Republic of China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:59436 今日访问量:2 总访问量:4868 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号