高级检索
当前位置: 首页 > 详情页

Repurposing econazole as a pharmacological autophagy inhibitor to treat pancreatic ductal adenocarcinoma

文献详情

资源类型:
Pubmed体系:

收录情况: ◇ 统计源期刊 ◇ CSCD-C ◇ 卓越:领军期刊

机构: [1]Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu 610041, China. [2]State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China. [3]Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China. [4]Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia. [5]Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA. [6]Department of Oncology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China.
出处:
ISSN:

摘要:
Pancreatic ductal adenocarcinoma (PDAC) is characterized by the highest mortality among carcinomas. The pathogenesis of PDAC requires elevated autophagy, inhibition of which using hydroxychloroquine has shown promise. However, current realization is impeded by its suboptimal use and unpredictable toxicity. Attempts to identify novel autophagy-modulating agents from already approved drugs offer a rapid and accessible approach. Here, using a patient-derived organoid model, we performed a comparative analysis of therapeutic responses among various antimalarial/fungal/parasitic/viral agents, through which econazole (ECON), an antifungal compound, emerged as the top candidate. Further testing in cell-line and xenograft models of PDAC validated this activity, which occurred as a direct consequence of dysfunctional autophagy. More specifically, ECON boosted autophagy initiation but blocked lysosome biogenesis. RNA sequencing analysis revealed that this autophagic induction was largely attributed to the altered expression of activation transcription factor 3 (ATF3). Increased nuclear import of ATF3 and its transcriptional repression of inhibitor of differentiation-1 (ID-1) led to inactivation of the AKT/mammalian target of rapamycin (mTOR) pathway, thus giving rise to autophagosome accumulation in PDAC cells. The magnitude of the increase in autophagosomes was sufficient to elicit ER stress-mediated apoptosis. Furthermore, ECON, as an autophagy inhibitor, exhibited synergistic effects with trametinib on PDAC. This study provides direct preclinical and experimental evidence for the therapeutic efficacy of ECON in PDAC treatment and reveals a mechanism whereby ECON inhibits PDAC growth.© 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.

语种:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 化学
小类 | 1 区 药学
最新[2023]版:
大类 | 1 区 医学
小类 | 1 区 药学
第一作者:
第一作者机构: [1]Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu 610041, China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:2 总访问量:4561 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号